Room-temperature multiferroic behavior in layer-structured Aurivillius phase ceramics

Cite as: Appl. Phys. Lett. **117**, 052903 (2020); https://doi.org/10.1063/5.0017781 Submitted: 09 June 2020 . Accepted: 25 July 2020 . Published Online: 07 August 2020

Zheng Li, Vladimir Koval 💿, Amit Mahajan, Zhipeng Gao, Carlo Vecchini, Mark Stewart, Markys G. Cain 回, Kun Tao, Chenglong Jia 💿, Giuseppe Viola, and Haixue Yan 💿

ARTICLES YOU MAY BE INTERESTED IN

Intrinsic piezoelectricity in (K,Na)NbO₃-based lead-free single crystal: Piezoelectric anisotropy and its evolution with temperature Applied Physics Letters **117**, 052904 (2020); https://doi.org/10.1063/5.0012124

Current-induced bulk magnetization of a chiral crystal CrNb₃S₆ Applied Physics Letters **117**, 052408 (2020); https://doi.org/10.1063/5.0017882

Magnetic transition behavior and large topological Hall effect in hexagonal $Mn_{2-x}Fe_{1+x}Sn$ (x = 0.1) magnet Applied Physics Letters 117, 052407 (2020); https://doi.org/10.1063/5.0011570

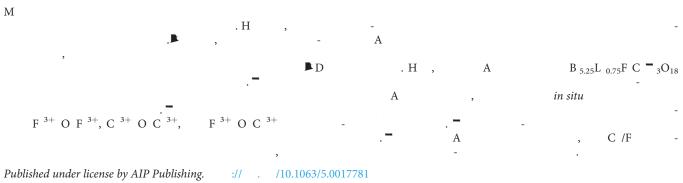
AIP

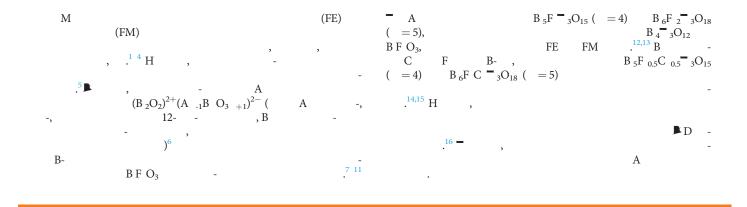
Appl. Phys. Lett. **117**, 052903 (2020); https://doi.org/10.1063/5.0017781 © 2020 Author(s).

Room-temperature multiferroic behavior in layer-structured Aurivillius phase ceramics

Cite as: Appl. Phys. Lett. **117**, 052903 (2020); doi: 10.1063/5.0017781 Submitted: 9 June 2020 · Accepted: 25 July 2020 · Published Online: 7 August 2020 · Corrected: 11 August 2020

Zheng Li,¹ Vladimir Koval,² Amit Mahajan,³ Zhipeng Gao,⁴ Carlo Vecchini,⁵ Mark Stewart,⁵ Markys G. Cain,⁶ Kun Tao,⁷ Chenglong Jia,^{7,a)} Giuseppe Viola,³ and Haixue Yan^{3,b)}

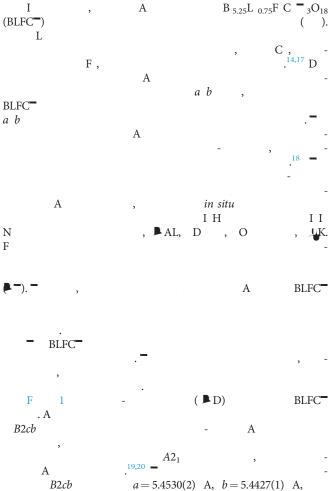

AFFILIATIONS

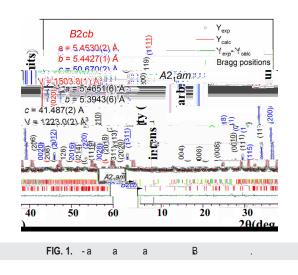

- ¹Gemological Institute, China University of Geosciences, Wuhan 430074, China
- ²Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, Kosice 04001, Slovakia
- ³School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, United Kingdom
- ⁴National Key Laboratory of Shock Wave and Detonation Physics Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
- ⁵National Physical Laboratory, Hampton Road, Teddington TW11 OLW, United Kingdom
- ⁶Electrosciences Ltd, Farnham, Surrey GU9 9QT, United Kingdom
- ⁷School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

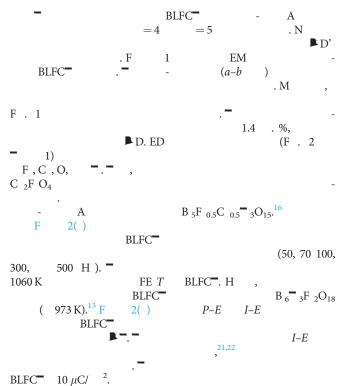
^{a)}Email: cljia@lzu.edu.cn

^{b)}Author to whom correspondence should be addressed: h.x.yan@qmul.ac.uk

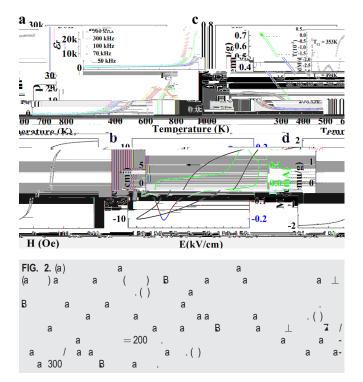
ABSTRACT



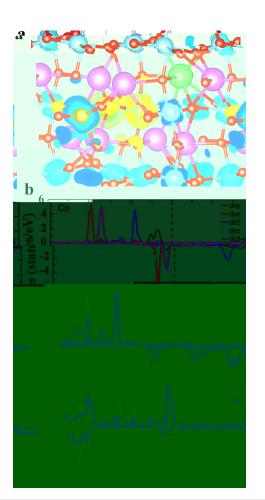

A . . . **117**, 052 03 (2020) 10.10 3/5.001 1 A

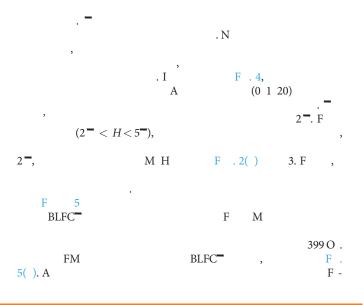

Applied Physics Letters

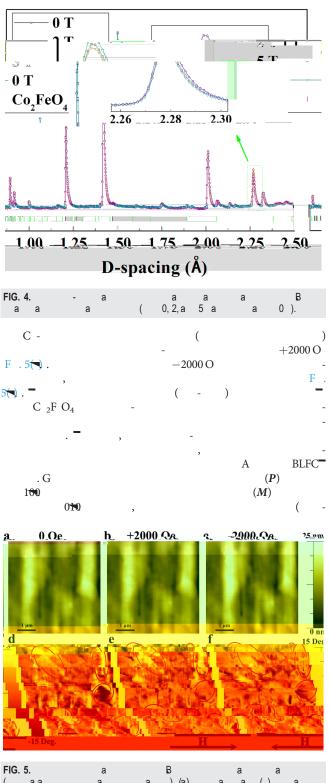
scitation.org/journal/apl

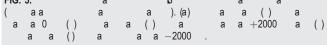


c = 50.670(2) A - $A2_1am$ a = 5.4651(6) A, b = 5.3943(6) A, c = 41.487(2) A F (://






A . . . **117**, 052 03 (2020) 10.10 3/5.001 1 A


 $_{1} \sim 494 \, \text{K}$ $B_{6}F C = {}_{3}O_{18} (526 K).^{23} =$ (M/ **-**), $F^{3+} O C^{3+} ($.).²⁴ – F³⁺ O F³⁺, C³⁺ O C³⁺, ED FC А $_2 \sim 353 \,\mathrm{K}$ C₂F O₄. – C₂F O₄ (460 K) 2 16,25 (M) C₂F O₄ 1.4 .% 0.22 0.32 / , BLFC-M = 1.85 /, F . 2(\neg). I ΜΗ , 1 **-**₂ (F . . 3). **-**425 K 1.58 / . -0.27 / , ED BLFC-Α . 3 F F $^{3+}$ O C $^{3+}$ (DF-) ab initio (A) Η =2 $L_{\rm C} = 3$ F C , (GGA)+1 . I BLFC F . 3(), F³⁺ C³⁺ (3.1 2.1 μ_B / 0.1 "' 2.1 $\mu_B/$), , 0.1 μ_{B} /). – - F O₆ C O₆ 0 F/C () F / . F . 3(¬). F F^{3+} C^{3+} (..., (. .,)) $E_{\rm FM} - E_{\rm AFM}$ = -144.1Н (FM) 43.5 (..., 504.6 K), FM FC/FC .F. .2(a b 010 F BLFC . I

DV

) I	$T = P \times M$ BLFC		FC
. F C ³⁺ O C ³⁺ ,	F ³⁺ O C ³⁺		F ³⁺ O F ³⁺ ,
. – A		, C /F	-

		· · · ·		
EM	-	(ED)	,	
		BLFC		

DM

	D.M ,	D.K , D.
D		
ΙΗ	II N	, ▶ AL,
D, , O	, <u></u> K. –	
A E	D	F ,
G A	A	(G N. 2/
0038/20), C (G	N . K2015-0602	006), N FC (G
N . 11474138	11834005). A	
E	M 🔋 🕨	(EM)
IND54 N	. – EM –	
EM	E L	AME E
4.	·	

DATA AVAILABILITY

_

REFERENCES

- , G. K , M. M. K , J. .: C

- ⁹L. K , $\ M , M.$, A. A , N. D , N. , $\ M , M.$ E. , $\ M , M.$, A. A , N. D , N. , $\ M , M.$ E. , $\ M , M.$, A. A , N. D , N. , $\ M , M.$ [2013]. ¹⁰ . L, J. M , . G , G. , . K , A. M , . L, C. J , C. N , H. , D $\ M , 5, 72 (2013).$ ¹²A. . B C. E , $\ M , B = 90, 214109 (2014).$ ¹³J. B. L , . . H , G. H. $\ G. L , J. L , J. \ M , C , J. K. L ,$

- A
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

- 104107 (2007).
- ¹⁸M. G. C , Characterisation of Ferroelectric Bulk Materials and Thin Films
- M. G. C. , Characterisation of Performance Line (, 2014), .2. ¹⁹. L. K. J. M. , .G. , .K. , C. J. , G. , H. , A. M. , J. C. , M. C. , I. A. , C. N. , C. J. H. , J. M. .C. .C 6, 2722 (2019) 2733 (2018).

- J.
 J.
 L.
 101, 012402 (2012).

 24B.
 J.
 J. C.
 L.
 104, 062413 (2014).

 25I.
 M
 ▶. N. B
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <t